STOPPING CLASSICAL COMPLEMENT AT THE START

ANNEXON biosciences

TREATING DISEASES OF THE BODY, BRAIN AND EYE

COMPANY PRESENTATION
JANUARY 11, 2021

Disclaimer

This presentation contains "forward-looking" statements about Annexon, Inc. and our industry that involve substantial risks and uncertainties. All statements of the than statements of historical facts, including statements regarding our clinical and preclinical programs, timing and commencement of future nonclinical studies and clinical trials and research and development programs, timing of clinical results, strategic plans for our business and product candidates, including additional indications which we may pursue, our financial position and anticipated milestones, are forward-looking statements. In some cases, you can identify forward looking statements by terminology such as "aim," "anticipate," "assume," "believe," "contemplate," "continue," "could," "design," "due," "estimate," "expect," "goal," "intend," "may," "objective," "plan," "positioned," "potential," "predict," "seek," "should," "target," "will," "would" and other similar expressions that are predictions of or indicate future events and future trends, or the negative of these terms or other comparable terminology.

Forward-looking statements are not guarantees of future performance and are subject to risks and uncertainties that could cause actual results and events to differ materially from those anticipated, including, but not limited to, risks and uncertainties related to: our history of net operating losses; our ability to obtain necessary capital to fund our clinical programs; the early stages of clinical development of our product candidates; the effects of COVID-19 or other public health crises on our clinical programs and business operations; our ability to obtain regulatory approval of and successfully commercialize our product candidates; any undesirable side effects or other properties of our product candidates; our reliance on third-party suppliers and manufacturers; the outcomes of any future collaboration agreements; and our ability to adequately maintain intellectual property rights for our product candidates. These and other risks are described in greater detail under the section titled "Risk Factors" contained in our Quarterly Report on Form 10-Q for the quarterly period ended September 30, 2020 filed with the Securities and Exchange Commission (SEC) on November 16, 2020 as well as discussions of potential risks, uncertainties and other important factors in our other filings with the SEC. All forward-looking statements in this presentation speak only as of the date of this presentation. Except as required by law, we undertake no obligation to publicly update any forward-looking statements, whether as a result of new information, future events or otherwise.

This presentation concerns drugs that are under clinical investigation and which have not yet been approved for marketing by the U.S. Food and Drug Administration (FDA). These are currently limited by Federal law to investigational use, and no representation is made as to their safety or effectiveness for the purposes for which they are being investigated.

Annexon: Pioneering Classical Complement Therapies to Treat Autoimmune, Neurodegenerative and Ophthalmic Diseases

Broad platform potential in orphan and large patient populations in autoimmune, neurodegenerative and ophthalmic diseases

Phase 2 pipeline with 3 drug candidates to deliver near-and mid-term catalysts

Precision medicine approach leveraging complement and disease biomarkers

Demonstrated Leadership Advancing Transformative Therapies

Doug Love, Esq.
President & CEO
Genentech, Amgen, Elan

Sanjay Keswani, M.D. Chief Medical Officer Roche, Eli Lilly, Amgen, Bristol-Meyers Squibb

Ted Yednock, Ph.D.
Chief Scientific Officer
Elan, Prothena, Athena

Michael Overdorf
Chief Business Officer
Eli Lilly

Jennifer Lew

Chief Financial Officer

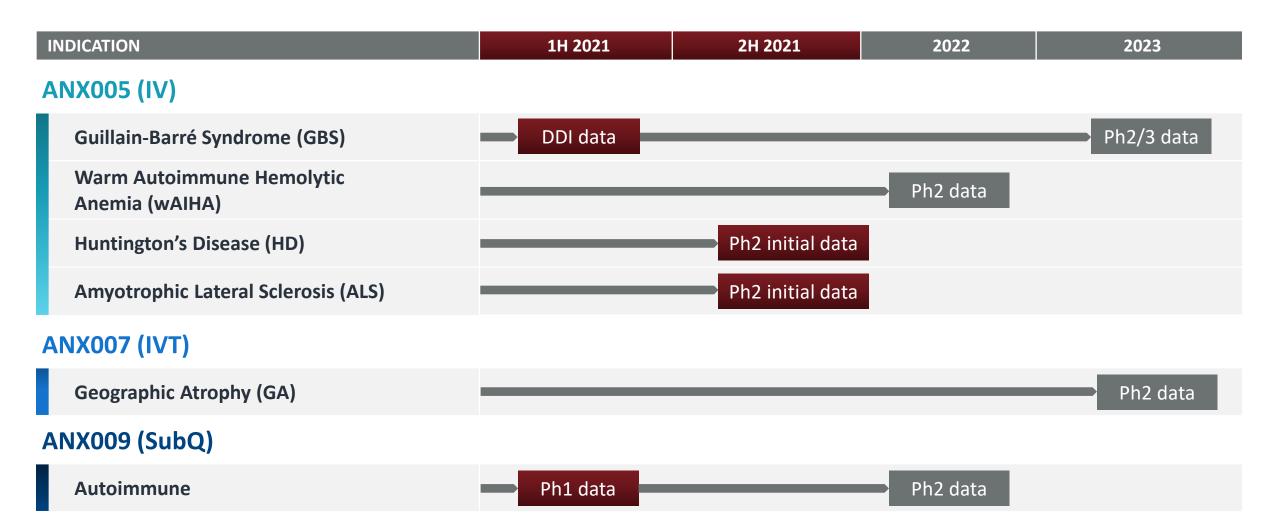
Aduro, Dynavax, Ernst & Young

Building a Leading Multi-Faceted Complement Company

2020: A Foundational Year

- \$100M Series D in June and \$263M Nasdaq IPO in July
- Robust ANX005 and ANX007 patient data demonstrating tolerability, full target engagement, biomarker/clinical data
- Rapidly advancing into multiple Ph2 autoimmune, neurodegenerative and ophthalmic trials
- O Developing innovative next generation drug candidates
 - ANX009 subcutaneous First-in-Human trial ongoing
 - Follow-on small molecule and monoclonal antibody candidates advancing to IND

Robust Clinical Pipeline of C1q Inhibitors for Body, Brain & Eye


Multiple clinical stage drug candidates with diverse routes of administration

INDICATION	PRECLINICAL	PHASE 1	PHASE 2	PHASE 2/3	CURRENT STATUS
ANX005 (IV)					
Guillain-Barré Syndrome (GBS)					Ph 2/3 Ongoing
Warm Autoimmune Hemolytic Anemia (wAIHA)					Ph 2 Initiating
Huntington's Disease (HD)					Ph 2 Ongoing
Amyotrophic Lateral Sclerosis (ALS)					Ph 2 Initiating
ANX007 (IVT)					
Geographic Atrophy (GA)					Ph 2 Initiating
ANX009 (SubQ)					
Autoimmune					Ph 1 Ongoing

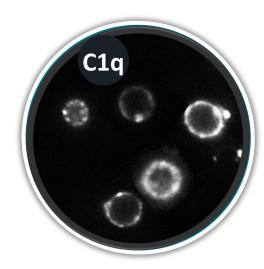
Significant Catalysts in 2021 and Beyond

Sufficient cash-runway to achieve these milestones

Why C1q and the Classical Complement Pathway?

C1q is key driver of disease processes for indications Annexon has targeted

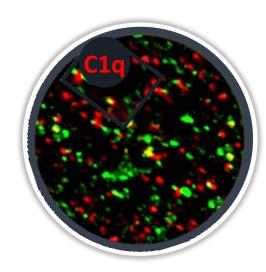
C1q directly binds to tissue, initiating and anchoring complement in diseases of the body, brain and eye


GBS

C1q

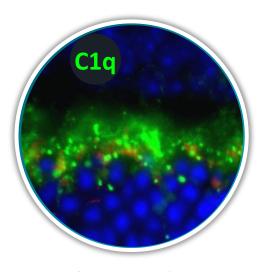
C1q Targeting the
Neuromuscular Junction

Halstead, et al. 2004 Brain 127: 2109-2123


HEMOLYTIC ANEMIA

C1q Targeting
Red Blood Cells

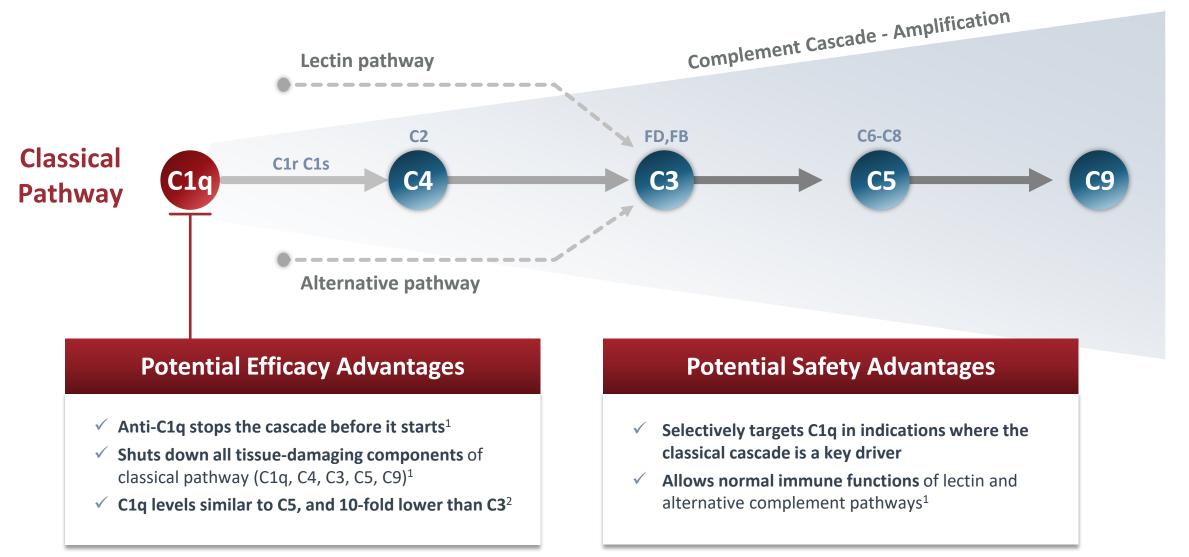
C1q bound to antibody coated RBC
Annexon data on file


HUNTINGTON'S

C1q Targeting Striatal
Synapses

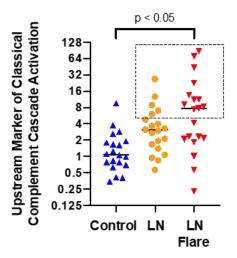
Jiao, et al., 2018 Mol Neurodegen 14:45

GEOGRAPHIC ATROPHY


C1q Targeting
Photoreceptor Synapses

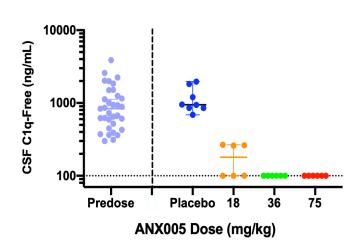
C1q bound to photoreceptor cells synapses in aged mice: Annexon data on file

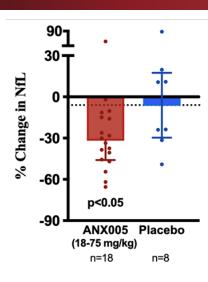
Inhibiting C1q Shuts Down Entire Classical Complement Pathway


Blocks C1q binding to tissues and downstream activation of C4, C3, C5 and C9

Leveraging Biomarkers to Increase Probability of Clinical Success

Measuring objective classical complement and disease markers in patients


Right Indication and Patient Selection


Target population for initial study

- 25% of lupus nephritis patients
- 55% of lupus nephritis patients in flare

Optimal Dose and Dosing Regimen

Objective Measures of Treatment Effect

Higher Classical Complement Activation in Patients with Lupus Nephritis,
Particularly Those in Flare

Inhibition of C1q observed in CSF at 18-75 mg/kg

High Dose ANX005 (18-75 mg/kg) Led to Significant Early NfL Reduction (Weeks 2 – 4)

GBS, a Destructive Neuromuscular Autoimmune Disease

Severe disease that causes acute paralysis

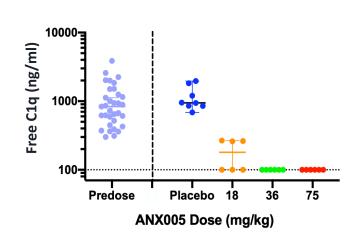
GUILLAIN-BARRÉ SYNDROME (GBS)

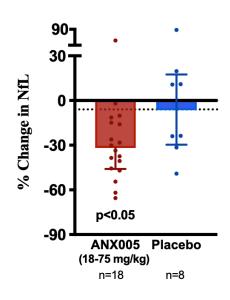
Rare orphan disease:

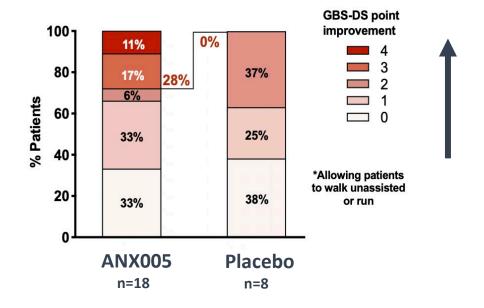
- 12K patients diagnosed annually in North America/Europe
- No approved therapy in the U.S.

Autoantibody attack on peripheral nerves, triggering complement (C1q) and neurodegeneration

Anti-C1q blocks autoantibody activation of complement and potentially prevents disability




ANX005 Well-Tolerated, Achieved Full Target Engagement, Reduced NfL and Prevented Disability in GBS Phase 1b Dose-Ranging Trial


Full Target Engagement in CSF at Higher Doses (18-75 mg/kg)

Significant Early NfL Reduction (Weeks 2 – 4)

28% of High Dose Patients Improved by ≥ 3 pts on GBS-Disability Scale by Wk 8

Dose Dependent Decrease of CSF Free C1q

High Dose ANX005 (18-75 mg/kg) vs Placebo

High Dose ANX005 (18-75 mg/kg) vs Placebo

Ongoing GBS Phase 2/3 Trial with ANX005

Fast Track and Orphan Drug designations granted

Placebo (n=~60)

ANX005 30 mg/kg (n = ~60)

ANX005 75 mg/kg (n = 60)

Single Dose Treatment

- Randomized, double-blind trial (N=~180)
- Primary endpoint: GBS Disability Scale
- Patients stratified for baseline muscle strength and time from symptom onset
- Data expected 2023

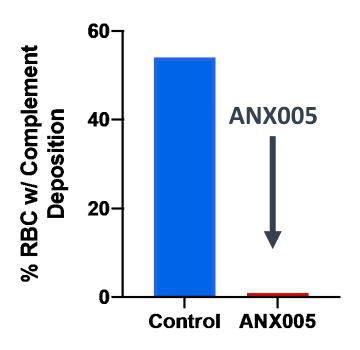
Targeting Life Threatening RBC Autoantibody Attack in wAIHA

WARM AUTOIMMUNE HEMOLYTIC ANEMIA (WAIHA)

Autoantibodies attack and destroy RBCs, resulting in anemia, can develop rapidly or gradually

- ~30,000 patients globally
- No approved therapy in U.S.

Complement activation amplifies RBC destruction in certain patients


Targeted strategy to select patients who meet specific biomarker criteria of complement activation

Antibody-Mediated Complement Activation in wAIHA Patient Sera – Identifying an Enriched Patient Population

ANX005 inhibits complement activation in wAIHA in vitro (n=1)

ACTIVITY FULLY INHIBITED BY ANXOOS

- Detected complement-activating antibodies in 4 of 12 wAIHA patients (literature suggests 20 – 30 %)
- Activity fully inhibited by ANX005 in vitro
- Precision medicine approach will enable appropriate patient selection for Phase 2 study

Planned Phase 2 wAIHA Trial with ANX005

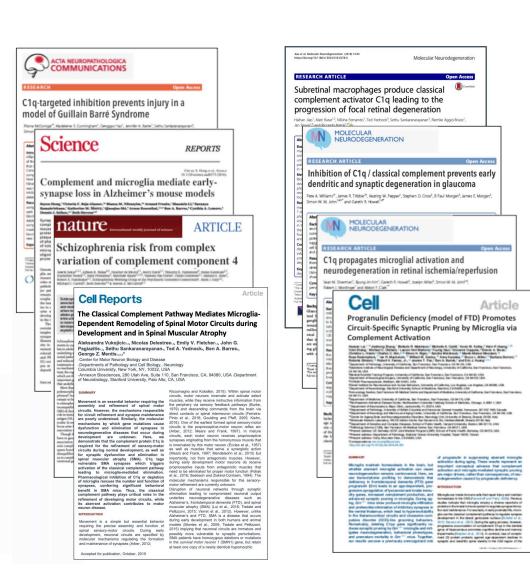
Phase 0

ANX005 100 mg/kg at weeks 0 and 1 (n= up to 12)

8 weeks follow up

- Open label trial (n= up to 12)
- Using Phase 0 'feeder' study to identify/ select patients for Phase 2
- Objective endpoints: safety, PK/PD, hemolysis markers, improvement in hemoglobin
- Plan to initiate 1H 2021

Pioneering Treatment of Complement-Mediated Neurodegeneration


Well-researched role of C1q inhibition to protect against synapse loss and neurodegeneration

Ben Barres, M.D., Ph.D.

Discoverer of C1q Technology Scientific Co-Founder, Annexon

- Synapse loss is a major driver of neurological disability and blindness
- Precedes loss of neurons
- Correlates with functional loss / cognitive decline

Differentiated Neuroprotective Approach for Geographic Atrophy

Targeting up and downstream complement activity associated with retinal nerve loss

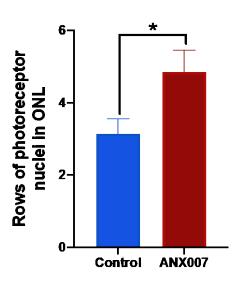

GEOGRAPHIC ATROPHY (GA)

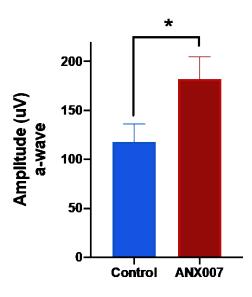
Loss of vision due to loss of neurons (photoreceptors)

- ~1 million U.S. patients; ~5 million worldwide
- No approved therapies to prevent onset or progression

Aberrant C1q activity results in neuronal loss

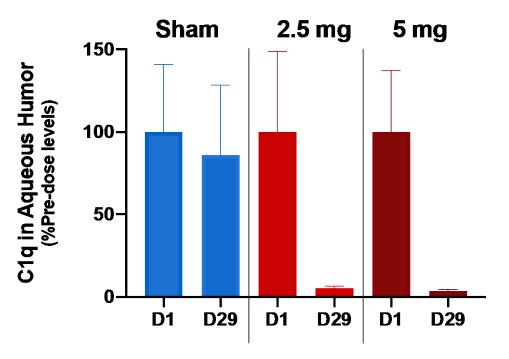
Anti-C1q is neuroprotective in GA models


Intravitreal Administration of Anti-C1q Provides Neuroprotection in a Mouse Model of Photoreceptor Cell Loss / Geographic Atrophy


- C1q is locally produced in the retina and a key driver of cell loss
- Upstream activator of C3
- Selective C1q inhibition allows normal function of lectin and alternative pathway

Intravitreal Administration of ANX007 Protects
Photoreceptor Cells and Retinal Function

Anti-C1q Protects Photoreceptor Cells / Retinal Thickness


Jiao,, et al., 2018 Mol Neurodegener 13(1):45
* p < 0.05; **<0.001

Intravitreal ANX007 Effectively Inhibits C1q in Phase 1b Patients

Full inhibition at low and high doses support monthly or less frequent dosing

Free C1q Levels in Aqueous Humor

D1 = Day 1 (before ANX007 dosing)

D29 = Day 29 (post- 1^{st} dose)

ANX007 DATA SUMMARY

- ANX007 well-tolerated at all dose levels
- Single intravitreal injection inhibited C1q in aqueous humor for at least 29 days at both low and high doses
- Repeat doses, N = 17

Initiating GA Phase 2 Trial with ANX007 in Q1 2021

ANX007 5.0 mg/eye 1x monthly (n=80)

Sham once monthly (n=~40)

ANX007 5.0 mg/eye every 2mo (n=~80)

Sham every 2 months (n=~40)

6 month
Off-treatment
follow up

- Randomized, double-masked trial (N= ~240)
- Primary endpoint: change in area of geographic atrophy on FAF
- Leveraging experience from related complement trials
- Data expected 2023

12mo Treatment Period

Pioneering Classical Complement Approach in Huntington's Disease

Targeting synaptic loss and neuronal death to tackle neurodegeneration

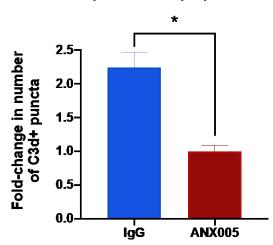
HUNTINGTON'S DISEASE (HD)

Progressive movement disorder, dementia, psychosis

- ~35,000 U.S. patients (Orphan)
- Subjects have high and sustained NfL levels

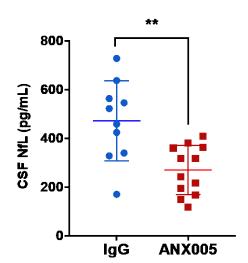
Aberrant C1q activity drives synaptic loss and disability

C1q inhibition protects against synapse loss and neurodegeneration in HD models

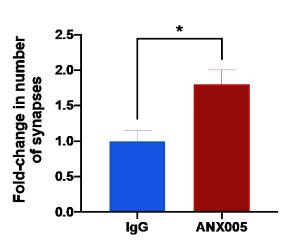


ANX005 Reduced Key Markers of Disease Activity in HD Mice

Decreased Complement Activation on Synapses, CSF NfL and Synapse Loss


Decreased Complement Activation on Synapses

Fold-Change in Complement Deposition on Synapses


Decreased Levels of CSF NfL

CSF NfL (pg/mL)

Protection Against Synapse Loss

Fold Change Synapse Number

Annexon data on file; Collaboration w/ Dan Wilton and Beth Stevens, Harvard

Annexon data on file. Study run in R6/2 model

* p < 0.05; ** p < 0.01; **** p < 0.0001

Annexon data on file; Collaboration w/ Dan Wilton and Beth Stevens, Harvard

Ongoing HD Phase 2 Trial with ANX005

Leveraging biomarkers to inform next stage of development and future neuro indications

6mo Treatment (n=~24)

3 month
Off-treatment
follow up

- Open label trial (N= ~24)
- Objective endpoints: Safety, C1q target engagement, and NfL reduction from baseline
- Development informed by large natural history cohorts
- Initial data expected 2H 2021

Targeting Downstream Neuronal Loss in ALS

Only upstream approach targeting both CNS and PNS aspects of the disease

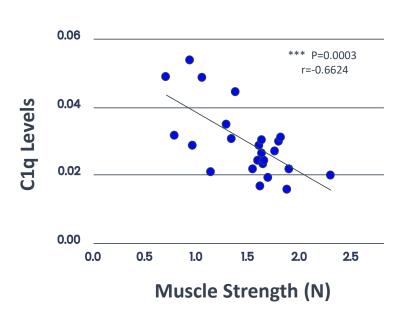
AMYTROPHIC LATERAL SCLEROSIS (ALS)

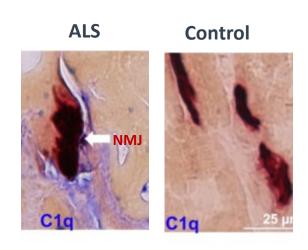
Progressive weakness of limb and respiratory muscles

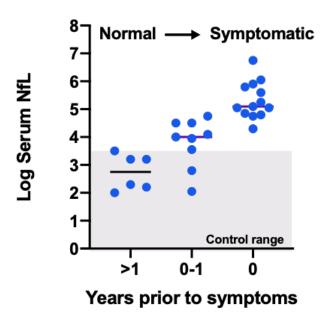
- ~30,000 patients globally (Orphan)
- Subjects have high baseline NfL levels

Aberrant C1q activity potentially drives synaptic/ NMJ loss and disability

Strong preclinical data supporting anti-C1q approach




C1q Deposition Correlated w/ Muscle Weakness in Mouse Model and Preceded Denervation in ALS Patients; NfL Elevated w/ Disease


C1q Levels in NMJ of ALS Mouse Model Correlate with Weakness

C1q Deposition in NMJ of ALS Patients Prior to Denervation

Serum NfL Elevated in ALS Patients a Year Prior to Symptom Onset

Reference ALS animal model: Lee et al., (2018) J Neuroinflam 15:171

Bahia El Idrissi et al. Journal of Neuroinflammation (2016) 13:72

Reference ALS patient data: Benatar, et al., 2018, Ann Neurol 84:130

Planned ALS Phase 2 Trial with ANX005

Leveraging biomarkers to inform next stage of development and future neuro indications

3mo Treatment (n=~24)

3 month
Off-treatment
follow up

- Open label trial (N= ~24)
- Objective endpoints: Safety, PK/PD, C1q target engagement, and NfL reduction from baseline
- Targeting all forms of ALS
- Plan to initiate early 2021
- Initial data expected 2H 2021

Potential to Expand Platform Across A Breadth of Diseases

Current indications and future opportunities in both orphan and large patient populations

AUTOIMMUNE

wAIHA

(warm Autoimmune Hemolytic Anemia)

CAD (Cold Agglutin Disease)

Lupus Nephritis

Bullous Skin Diseases

HIT (Heparin Induced Thrombocytopenia)

Rheumatoid Arthritis

Crohn's Disease

GBS (Guillain-Barré Syndrome)

CIDP

(Chronic Idiopathic Demyelinating Polyneuropathy)

MMN (Multifocal Motor Neuropathy)

PMS (Progressive Multiple Sclerosis)

ON (Optic Neuritis)

NEURODEGENERATION

HD (Huntington's Disease)

ALS (Amyotrophic Lateral Sclerosis)

FTD (Frontal Temporal Dementia)

SMA (Spinal Muscular Atrophy)

AD (Alzheimer's Disease)

TBI (Traumatic Brain injury)

OPHTHALMOLOGY

GA (Geographic Atrophy)

GLA (Glaucoma)

Current Indications

Poised to Drive Value in 2021 and Beyond

 Targeting aberrant C1q / classical pathway activation to treat devastating tissue damage in the diseases we're pursuing

 Broad platform potential in orphan and large patient populations in autoimmune, neurodegenerative and ophthalmic diseases

- Great momentum and well-resourced to deliver on 2021 priorities
 - Execute 5 clinical trials
 - Report initial clinical data from 4 diverse trials
 - Advance to IND next generation small molecule and mAB drug candidates

ANNEXON biosciences

THANK YOU